OFDM系统各种调制阶数的QAM误码率(Symbol Error Rate)与 误比特率(Bit Error Rate)仿真结果

OFDM系统各种调制阶数的QAM误码率(Symbol Error Rate)与 误比特率(Bit Error Rate)仿真结果

本文是OFDM系统的不同QAM调制阶数的误码率与误比特率仿真,仅考虑在高斯白噪声信道下的情景,着重分析不同信噪比下的误码(符号)率性能曲线,不关心具体的调制与解调方案,仿真结果与理论的误码率曲线进行了对比。

考虑一个简单的OFDM系统,每个频域子载波承载一个QAM调制符号,在经过不同信噪比白噪声信道之后,每个QAM调制符号的解调性能如何,每个符号对应的比特解码性能如何?理论的误码性能如何?

代码

clc;close all;clear

%% Seting parameters

EbN0_list = 0:1:10;

Q_order_list = 2:2:10;

loopNumber = 10;

fprintf('Qm\t EbN0 \t \t EsN0 \t \t SNR_Cal \t \t ser \t\t ser_theory\t\t\t ber\t\t nloop \t\t \n');

for iQorder = 1 : length(Q_order_list)

for iEbN0 = 1 : length(EbN0_list)

%% Frame structure

N_Frame = 10;

N_Symbol = 14;

N_RB = 106;

N_SC_perRB = 12;

N_SC = N_RB * N_SC_perRB;

N_Ant = 1;

N_fft_order = floor(log2(N_RB * N_SC_perRB));

N_fft = 2^(N_fft_order+1);

N_cp = N_fft/8;

EbN0 = EbN0_list(iEbN0);

%% Modulation

Q_order = Q_order_list(iQorder);

Qm = 2^Q_order;

N_bit = N_Frame * N_Symbol * N_RB * N_SC_perRB * Q_order;

%% Noise Calculation

SNR = EbN0 + 10 * log10(Q_order);

%% Loop

for iloop = 1 :loopNumber

data_bit_in = randi([0 1], 1, N_bit);

dataSymbolsIn = bi2de(reshape(data_bit_in, Q_order, N_bit/Q_order).', 'left-msb');

dataMod = qammod(dataSymbolsIn, Qm,'UnitAveragePower', true);

%% Show Constellation

%scatterplotme(dataMod)

%% Resource Mapping

RE_Grid = zeros(N_RB * N_SC_perRB,N_Symbol * N_Frame);

dataMod_tmp = reshape(dataMod,N_RB * N_SC_perRB,[]); %only data

Power_Scale = 1;

RE_Grid_all = Power_Scale * dataMod_tmp;

%% IFFT add CP

frame_mod_shift = ifftshift(RE_Grid_all);

ifft_data = ifft(frame_mod_shift,N_fft)*sqrt(N_fft);

%ifft_data = ifft(frame_mod_shift)*sqrt(1272);

Tx_cd = [ifft_data(N_fft-N_cp+1:end,:);ifft_data];

time_signal = reshape(Tx_cd,[],1);

%% Channel

power_RE = sum(sum(abs(RE_Grid_all).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame;

power_tp = sum(sum(abs(ifft_data).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame; %IFFT zero padding averages the true RE Power

N0 = power_RE .* 10.^(-SNR / 10);

white_noise_starand = 1/sqrt(2)*(randn(size(time_signal)) + 1j * randn(size(time_signal)));

TransmittedSignal = time_signal + sqrt(N0) * white_noise_starand;

%% Receive and Sys

ReceivedSignal = TransmittedSignal;

%% FFT and Frame

frame_recieved_parallel = reshape(ReceivedSignal, N_fft + N_cp, []);

frame_Received = frame_recieved_parallel(N_cp + 1:end,:);

frame_Grid_Received = fft(frame_Received,N_fft) / sqrt(N_fft);

RE_Grid_all_Received = fftshift(frame_Grid_Received(1 : N_SC,:));

%% Demodulation

RE_PreDeMod = reshape(RE_Grid_all_Received,[],1);

dataSymbolsOut = qamdemod(RE_PreDeMod, Qm,'UnitAveragePower', true);

data_bit_out = reshape((de2bi(dataSymbolsOut, 'left-msb')).',1,[]);

power_RE_receid = sum(sum(abs(RE_PreDeMod).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame;

snr_all(iQorder,iEbN0,iloop) = 10*log10(power_RE/(power_RE_receid - power_RE));

%% Result: Ser and Ber

%Ser

sym_err = length(find(dataSymbolsOut - dataSymbolsIn));

ser_all(iQorder,iEbN0,iloop) = sym_err / length(dataSymbolsOut);

%Ber

bit_error = sum(abs(data_bit_out - data_bit_in));

ber_all(iQorder,iEbN0,iloop) = bit_error / length(data_bit_out);

end

sers = mean(ser_all,3);

snrs = mean(snr_all,3);

bers = mean(ber_all,3);

sers_theory(iQorder,iEbN0) = QAM_SER_Theory(Qm,EbN0);

fprintf('%dQAM\t%f\t %f\t %f\t %e\t\t%e\t\t%e\t\t%d\t\n', Qm, EbN0, SNR,snrs(iQorder,iEbN0),sers(iQorder,iEbN0),sers_theory(iQorder,iEbN0),bers(iQorder,iEbN0),loopNumber);

end

end

figure(1)

semilogy(EbN0_list, bers(1,:), 'k--+');

hold on

grid on

semilogy(EbN0_list, bers(2,:), 'r--o');

semilogy(EbN0_list, bers(3,:), 'b--x');

semilogy(EbN0_list, bers(4,:), 'g--s');

xlabel('Eb/N0,dB');

ylabel('BER');

title('BER VERS SNR');

legend('QPSK','16QAM','256QAM','1024QAM');

figure(2)

semilogy(EbN0_list, sers(1,:), 'k--+');

hold on

grid on

semilogy(EbN0_list, sers_theory(1,:), 'k-');

semilogy(EbN0_list, sers(2,:), 'r--o');

semilogy(EbN0_list, sers_theory(2,:), 'r-');

semilogy(EbN0_list, sers(3,:), 'b--x');

semilogy(EbN0_list, sers_theory(3,:), 'b-');

semilogy(EbN0_list, sers(4,:), 'g--s');

semilogy(EbN0_list, sers_theory(4,:), 'g-');

xlabel('Eb/N0,dB');

ylabel('SER');

title('SER VERS SNR');

%SML = simulation, THR = theory

legend('QPSK-SML','QPSK-THR','16QAM-SML','16QAM-THR','256QAM-SML','256QAM-THR','1024QAM-SML','1024QAM-THR');

计算理论误比特率的函数需要参考文献,不过观察误码率与误比特率曲线,大体趋势相同,也许仅相差一个和调制阶数相关的常数(后来验证并非如此简单)。

%% Theory Symbol Error Rate

function SER = QAM_SER_Theory(Qm,EbN0)

%Reference https://dsplog.com/2012/01/01/symbol-error-rate-16qam-64qam-256qam/

Q_order = log2(Qm);

EsN0_DB = EbN0 + 10 * log10(Q_order);

EsN0 = 10.^( EsN0_DB/ 10);

k = sqrt(3 / (2*(Qm - 1)));

k_snr = k * sqrt(EsN0);

cer = erfc(k_snr);

SER = 2*(1 - 1/sqrt(Qm))*cer - (1 - 2/sqrt(Qm) + 1/Qm) * (cer.^2);

% cer = erfc(sqrt(EsN0/2));

% SER = cer - 1/4*cer.^2;

仿真结果

SER VERS SNR(该图理论(THR)误符号率曲线和实际仿真(SML)理论误符号率曲线基本重合)

BER VERS SNR(未画出理论误码率曲线)

SER VERS SNR(该图的横坐标信噪比是每个QAM符号的信噪比而不是每bit的信噪比)

BER VERS SNR(未画出理论误码率曲线)

分析结论

本仿真中应该重点关注信噪比的换算,包括Eb/N0(每bit的信噪比)到Es/N0(每QAM符号的信噪比),频域通过IFFT到时域前后计算SNR,特别是子载波个数与IFFT的点数不相同时,如何在时域加噪声,每个时域采样点的噪声功率N0应该加多大。

反思

1.仅白噪声下的仿真结果,那么在多径信道下的仿真曲线如何呢?如何利用信道均衡来对抗多径带来的频率选择性衰落。2.在调制阶数越来越高的情况下,误码率与误比特率都随之升高,那么通信中是如何通过调制阶数的升高来提升系统的吞吐量的呢?信道编码的作用。3.如何利用多个天线MIMO技术来提高通信系统的有效性与可靠性?信道预编码与均衡。

相关推荐

《DNF》2018起源版本体验服最新更新汇总
365bet世界

《DNF》2018起源版本体验服最新更新汇总

📅 08-03 👁️ 9596
[世界杯]洛扎诺打入唯一进球 墨西哥险胜德国
365信誉线上

[世界杯]洛扎诺打入唯一进球 墨西哥险胜德国

📅 06-29 👁️ 3311
Win7麦克风启用方法详解
365bet亚洲真人网

Win7麦克风启用方法详解

📅 08-13 👁️ 1475
c罗世界杯进了几个球了
365信誉线上

c罗世界杯进了几个球了

📅 07-01 👁️ 7957
《九游》转移账号教程
365bet世界

《九游》转移账号教程

📅 07-30 👁️ 712
华为计算机如何安装驱动程序
365信誉线上

华为计算机如何安装驱动程序

📅 06-29 👁️ 5376
公差分析深度解析:从基础到高级应用
365bet世界

公差分析深度解析:从基础到高级应用

📅 08-08 👁️ 2251